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Abstract 
Poly(butylene adipate-co-terephthalate) (PBAT), a promising biodegradable aliphatic-aromatic copolyester material, can 
be applied as an alternative material to reduce the adverse effects of conventional plastics. However, the degradation of 
PBAT plastics in soil is time-consuming, and effective PBAT-degrading microorganisms have rarely been reported. In 
this study, the biodegradation properties of PBAT by an elite fungal strain and related mechanisms were elucidated. Four 
PBAT-degrading fungal strains were isolated from farmland soils, and Purpureocillium lilacinum strain BA1S showed a 
prominent degradation rate. It decomposed approximately 15 wt.% of the PBAT films 30 days after inoculation. Scanning 
electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Liquid chromatography mass spectrometry 
(LC‒MS) were conducted to analyze the physicochemical properties and composition of the byproducts after biodegra-
dation. In the presence of PBAT, the lipolytic enzyme activities of BA1S were remarkably induced, and its cutinase gene 
was also significantly upregulated. Of note, the utilization of PBAT in BA1S cells was closely correlated with intracellular 
cytochrome P450 (CYP) monooxygenase. Furthermore, CreA-mediated carbon catabolite repression was confirmed to be 
involved in regulating PBAT-degrading hydrolases and affected the degradation efficiency. This study provides new insight 
into the degradation of PBAT by elite fungal strains and increases knowledge on the mechanism, which can be applied to 
control the biodegradability of PBAT films in the future.

Key points
• Purpureocillium lilacinum strain BA1S was isolated from farmland soils and degraded PBAT plastic films at a prominent rate.
• The lipolytic enzyme activities of strain BA1S were induced during coculture with PBAT, and the cutinase gene was sig-
nificantly upregulated during PBAT degradation.
• CreA-mediated carbon catabolite repression of BA1S plays an essential role in regulating the expression of PBAT-degrading 
hydrolases.

Keywords PBAT plastic · Lipolytic enzymes · Cutinase · Cytochrome P450 · Carbon catabolite repression · 
Purpureocillium lilacinum

Introduction

Poly(butylene adipate-co-terephthalate) (PBAT) is an ali-
phatic and aromatic copolyester that is synthesized by a poly-
condensation reaction of 1,4-butanediol (BDO), adipic acid 
(AA), and terephthalic acid (PTA) (Jian et al. 2020). PBAT 
is a promising biodegradable material that shows similar 
mechanical properties to low-density polyethylene (LDPE) 
and is more flexible than most biodegradable polyesters, 

such as PLA and PBS (Bordes et al. 2009; Nagarajan et al. 
2013). PBAT-based products exhibit good hydrophilicity, 
excellent mechanical properties, and biodegradability and 
are widely used in many applications, such as packaging, 
mulch film, and cutlery (Kargarzadeh et al. 2020). Various 
aliphatic and aromatic oligomers could be determined and 
identified during PBAT degradation, but only the monomers 
BDO, AA, and PTA were observed at the end of the experi-
ments (Witt et al. 2001). The rate of PBAT biodegradation is 
very low under mesophilic conditions (Rychter et al. 2010; 
Šerá et al. 2016) but is rapid at relatively high temperatures 
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(50–60 °C) in composts (Saadi et al. 2013; Svoboda et al. 
2019).

The common plastic-degrading enzymes are carboxylic 
ester hydrolases (EC 3.1.1), which are often annotated as 
lipases, esterases, cutinases, amidases, or proteases; these 
hydrolases catalyze the depolymerization of polymer chains 
into simpler monomeric units (Ali et al. 2021; Buchholz 
et al. 2022; Kaushal et al. 2021). Fragments of polymeric 
materials can be used directly by microorganisms or indi-
rectly through metabolic intermediates as sources of nutri-
ents or energy for growth and reproduction (Krzan et al. 
2006). Intracellular cytochrome P450 (CYP) enzymes, the 
ubiquitous superfamily of monooxygenases, play an essen-
tial role in the assimilation of nonactivated hydrocarbons 
(aliphatic, alicyclic, and aromatic molecules) from lipophilic 
compounds to more hydrophilic derivatives through intricate 
processing (Črešnar and Petrič 2011; Yeom et al. 2021). The 
monooxygenase activity of intracellular cytochrome P450 
(CYP) is an essential index for plastic degradation (Ali et al. 
2021). It has been reported that P450 monooxygenases are 
involved in the cleavage of saturated carbon‒carbon bonds 
during the biodegradation of PE and PS (Matthews et al. 
2017; Xu et al. 2019). NADPH-cytochrome P450 reductase 
(CPR) is an essential enzyme for electron transfer in the 
cytochrome P450 system, and its activity can usually repre-
sent that of CYP (Jing et al. 2018).

Purpureocillium lilacinum (formerly Paecilomyces 
lilacinus) is a species of filamentous and entomopathogenic 
fungus and is among the most promising and practicable 
biocontrol agents against plant parasite nematodes (Sarven 
et al. 2019; Yang et al. 2015). This fungal species has been 
reported to biodegrade a variety of petroleum hydrocarbons 
(Benguenab and Chibani 2021), such as the synthetic plas-
tics PBAT, PLA, LDPE, PBSA, and PU (Lee et al. 2021; 
Spina et al. 2021; Tan et al. 2008; Yamamoto-Tamura et al. 
2015).

In this study, we screened and isolated several PBAT-
degrading isolates from farmland soils and identified a 
potential fungal strain BA1S of P. lilacinum. We aim to 
improve and control PBAT biodegradability by elucidating 
the biodegradation properties and related mechanisms of 
this strain.

Materials and methods

Plastic materials

Poly(butylene adipate-co-terephthalate) (PBAT) parti-
cles and films were provided by the Material and Chemi-
cal Research Laboratories of the Industrial Technology 
Research Institute (ITRI). The number-average molecular 
weight (Mn) and the average molecular weight (Mw) of the 

PBAT films were 7732 and 58919 g/mol, respectively. The 
molar ratio of the butylene adipate (BA) unit to the butyl-
ene terephthalate (BT) unit in the copolymer PBAT was 
0.52/0.48  molBA/molBT, which was determined by 1H NMR 
spectroscopy in  CDCl3.

Soil sampling locations

Soil samples (9 samples in total) were collected from the 
topsoil (5–20 cm depth) at the following sites in Taiwan. 
Three samples were collected in New Taipei City (Dan-
shui mangrove wetland soil, 25°09′30.1"N 121°27′22.5"E) 
and Taipei City (National Taiwan University field 
soil, 25°00′56.0"N 121°32′22.9"E, and compost soil, 
25°00′57.9"N 121°32′31.4"E). Three samples were col-
lected in Miaoli County (strawberry soil, 24°26′45.3"N 
120°52′51.3"E; cabbage and tomato soils, 24°27′39.8"N 
120°43′08.7"E); one sample was collected in Chiayi County 
(banana soil, 23°27′27.6"N 120°25′30.5"E); two samples 
were collected in Tainan City (beach soil, 22°58′49.8"N 
120°09′15.2"E; field soil, 23°08′32.8"N 120°08′24.0"E).

Screening and isolation of PBAT‑degrading 
microorganisms

The screening system was based on a modified clear zone 
method (Chien et al. 2022) to prepare the PBAT emulsified 
plates. In this method, 100 µL of the soil suspension (pre-
pared by dissolving 1 g of soil sample in 5 mL of distilled 
water and shaking at 100 rpm for 30 min at room tempera-
ture) was spread over the surface of the emulsified PBAT 
agar plate with glass beads, and the plates were incubated 
at 25 °C and 30 °C. The streaking plate method was used to 
isolated pure cultured PBAT-degrading microorganisms that 
had formed clear zones on the plates. A modified method 
was used by directly adding the soil suspension into the 
holes (created by the tail base site of a 200-µL microtip) on 
the PBAT plate and then cultivating the plates in the incu-
bator until clear zones formed. To isolate PBAT-degrading 
bacteria, we applied the antifungal agent nystatin (0.5 mg/ml 
in DMSO) to inhibit the growth of fungi (Atiq et al. 2010).

Identification and phylogenetic analysis 
of microbial isolates

The total genomic DNA (gDNA) of the isolates was 
extracted by the Presto™ Mini gDNA kit (Geneaid Biotech 
Ltd., Taipei, Taiwan). Fungal DNA used primers ITS5 (5’-
GGA AGT AAA AGT CGT AAC AAGG-3’) and ITS4 (5’-TCC 
TCC GCT TAT TGA TAT GC-3’) to amplify the internal tran-
scribed spacer (ITS) and 5.8S rRNA between 18S rRNA and 
28 rRNA regions (Gardes and Bruns 1993; Ragonezi et al. 
2013). Amplicons were compared with the NCBI GenBank 
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database, and the species were identified using the Basic 
Local Alignment Search Tool (BLAST) (https:// blast. ncbi. 
nlm. nih. gov/ Blast. cgi/) after Sanger sequencing. The phy-
logenetic tree was generated using Molecular Evolutionary 
Genetics Analysis (MEGA) software version X (https:// 
www. megas oftwa re. net/) with the neighbor-joining method 
(1,000 bootstrap repeats). The strain P. lilacinum BA1S was 
deposited in the Bioresource Collection and Research Center 
(BCRC, https:// www. bcrc. firdi. org. tw/ en/ home/) under 
accession number BCRC FU31904. The ITS sequence of 
Purpureocillium lilacinum BA1S was submitted to the Gen-
Bank database under accession number OQ781167.

Growth media and culture conditions 
for the isolates

The fungal strains were initially cultured on potato dextrose 
agar (PDA) plates at 30 °C for 7–10 days until spores were 
generated. The spores were collected with sterile distilled 
water containing 0.05% Tween 20 (Bioman Scientific Co., 
Ltd., Taipei, Taiwan). The procedure for mycelia preparation 
was performed following a previous method (Xia et al. 2019) 
with some modifications.

Determination of microbial PBAT biodegradability

To determine the PBAT decomposing ability of different 
strains, microbes were cocultured with PBAT films in a 
carbon-free broth. Ten pieces of PBAT plastic films (size: 
2.5 cm × 5 cm, thickness: 30 µm) were sterilized with 6% 
sodium hypochlorite and 75% ethanol for 30 min and placed 
into 100 mL of the broth after washing with sterile water. 
One hundred microliters of every  108 spores/mL spore solu-
tion or  108 CFU/mL bacterial broth was added into the broth 
for different tests (equivalent to  106 spores/mL or  106 CFU/
mL). Three pieces of plastic film were collected for each 
sampling. The attached microbes were gently removed by 
washing them with a commercial detergent (PAOS®, Nice 
Co., Taiwan), and the plastics were dried in a 60 °C oven. 
The degradation rate of the PBAT films was calculated using 
the following modified equation (Jia et al. 2021a):

where  W0 is the weight of the PBAT films before degrada-
tion and  Wt is the weight after the incubation time.

SEM analysis

To confirm the microbial adhesion and the surface morphol-
ogy of the plastic film during degradation, the sample was 
evaluated by scanning electron microscopy (SEM) (Jeol, JSM-
6510, Tokyo, Japan) as described by (Yoshida et al. 2016).

Degradation rate of the PBAT films (%) =
(

W0 −Wt

)

∕W0 × 100%,

FTIR analysis

Fourier transform infrared spectroscopy has been used in 
various studies to investigate the biodegradation of plastics 
and analyze the structural changes in polymers (Han et al. 
2021; Kilic et al. 2019; Shah et al. 2008). The PBAT films 
were washed by DDW to remove the attached microbes and 
were scanned in a wavelength range of 400–4000  cm−1 by an 
attenuated total reflection Fourier transform infrared spec-
trometer (ATR-FTIR; Thermo Scientific Nicolet 380).

LC–MS analysis

We used the Rapid Separation LC (RSLC) system (Thermo 
Scientific, Dionex serial No. 8054164) with a quadrupole 
time-of-flight (QTOF) mass spectrometer (Bruker serial No. 
282001-00040) to evaluate the remaining plastic residues of 
the PBAT films in the broth after degradation by P. lilacinum 
BA1S for 14 days. The experimental conditions followed 
those in previous studies (Jia et al. 2021a; Sato et al. 2017). 
The mobile phase used was water-methanol. The chemical 
compounds were unambiguously confirmed by the standards 
based on the retention time (RT), ultraviolet spectra (UV), 
and mass spectrometry (MS) results.

Extracellular lipolytic enzyme assay

To concentrate the extracellular crude protein secreted by 
the individual isolates, we used the diafiltration method 
and dialysis in 50 mM  NaH2PO4 buffer (pH 7.0). Lipolytic 
enzyme activity was spectrophotometrically determined by 
the colorimetric method using varying acyl chain lengths of 
p-nitrophenyl esters (Gilham and Lehner 2005; Hwang et al. 
2005). All procedures were modified according to a previous 
study (Chien et al. 2022).

Cytochrome P450 reductase activity assay

P. lilacinum BA1S was cultured with PBAT films in carbon-
free minimal broth for 7, 14, and 21 days. Potato dextrose broth 
(PDB) (Bioman Scientific Co., Ltd) and carbon-free minimal 
broth with 1% glucose (Bioman Scientific Co., Ltd) were 
used as the control treatments (incubated for 5–7 days). The 
separated mycelium was washed twice with 1 × PBS buffer 
and ground into powder by homogenizing with glass beads 
using Tissue Lyser II (Qiagen, USA). Intracellular protein 
was extracted by adding extraction buffer (50 mM  K2HPO4, 
5 mM  MgCl2, 5 mM 2-mercaptoethanol, and 0.5 mM EDTA) 
(Battaglia et al. 2011) and then shaking for 1 h at 4 °C. After 
that, the mixtures were centrifuged for 10 min at 12,000 rpm 
at 4 °C, and the supernatant was filtered through a 0.22 μm 
filter. The extracted protein concentration was quantified by 
the Bradford method with bovine serum albumin (BSA) as 

https://blast.ncbi.nlm.nih.gov/Blast.cgi/
https://blast.ncbi.nlm.nih.gov/Blast.cgi/
https://www.megasoftware.net/
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a standard. The NADPH cytochrome P450 reductase activ-
ity assay was measured based on the reduction activity of the 
surrogate electron acceptor cytochrome c (Guengerich et al. 
2009; Huang et al. 2015).

Gene expression analysis of P. lilacinum 
by quantitative real‑time PCR (qPCR)

P. lilacinum BA1S was cocultured with PBAT film, which 
was the sole carbon source. On the other hand, 1% glucose 
(Bioman Scientific Co., Ltd) was used as a control carbon 
source for P. lilacinum BA1S incubation for 5–7 days. The 
mycelium was gently separated from the surface of PBAT 
plastic films, quickly frozen in liquid nitrogen, and stored 
at -80 °C in TRIzol® reagent (Invitrogen, USA) for RNA 
extraction with a Direct-zol™ RNA MiniPrep kit (Zymo 
Research, USA) following the manufacturer’s instructions. 
Total RNA was treated with a TURBO DNA-free™ Kit (Inv-
itrogen, USA), and first-strand cDNA was synthesized by 
SuperScrip™ IV Reverse Transcriptase (Invitrogen, USA) 
with oligo (dT)20 primers. Real-time quantitative PCR analy-
ses of gene expression were performed with a LightCycler 
480 System (Roche Diagnostics, Germany) using LightCy-
cler 480 SYBR Green I Master Mix (Roche Diagnostics, Ger-
many). For all qPCRs, two technical replicates were run for 
each biological replicate. The housekeeping actin gene was 
used for transcript normalization as the reference gene (Wang 
et al. 2016). Relative expression (fold change) of target genes 
was calculated by the  2−ΔΔCT method (Livak and Schmittgen 
2001), and the primer efficiency was determined using stand-
ard curves with five 1:10 dilutions of cDNA (Pfaffl 2001). 
The associative genes chosen to evaluate the correlation with 
PBAT degradation are listed in Table S1.

Statistical analysis

All statistical analyses of variance were performed by one-way 
ANOVA using R version 4.1.0. Tukey's honestly significant 
difference (Tukey's HSD) test was used for multiple compar-
isons among testing groups. Student’s t test was applied to 
determine the difference between the means of two groups. 
Groups were considered statistically significant when p < 0.05.

Results

Screening and identification of potential 
PBAT‑degrading strains

We isolated several potential fungal strains from the respec-
tive transparent clearing zones on the plates by serial dilu-
tion and the streaking plate method (data not shown). In the 
first screening, BA1S, BA2S, CB1S, and SB1S were selected 

as potential PBAT degraders, and their biodegradabilities 
were further verified by inoculating them on emulsified 
PBAT agar plates (Fig. 1A). BA1S and BA2S were isolated 
from the banana field located in Chiayi County, and CB1S 
and SB1S were isolated from the cabbage field and straw-
berry field located in Miaoli County, respectively. Accord-
ing to the morphological characteristics of the isolates with 
hyphae and spores on the PDA plates, we assumed that these 
four isolates (BA1S, BA2S, CB1S, and SB1S) were fungi 
(Fig. 1A). They were identified by phylogenetic analysis of 
partial sequences of ITS genes (including the 5.8S ribosomal 
RNA gene), which showed high sequence similarity with 
Purpureocillium lilacinum (100%), Penicillium citrinum 
(100%), Aspergillus fumigatus (100%), and Westerdykella 
dispersa (100%). Additionally, a phylogenetic tree was built 
based on the ITS sequences of the isolates, and the reference 
strains were used to elucidate their taxonomic relationship 
(Fig. 1B).

P. lilacinum BA1S showed a good ability to adhere 
and degrade PBAT films

For the sample inoculated with P. lilacinum BA1S, the sur-
face of the whole film was covered by a compact layer of 
mycelia. In contrast, those inoculated with the other fungal 
strains (i.e., BA2S, CB1S, and SB1S) were covered with a 
thin layer of mycelia on the surface. After the superficial 
mycelia were removed, the whole surface of the plastic film 
inoculated with P. lilacinum BA1S was evenly opaque, while 
the other treatments displayed unevenly transparent places 
on the surfaces of the films (Fig. 2A). Although the differ-
ence in appearance between the PBAT films with higher 
degradation and those with lower degradation seemed insig-
nificant, we observed that as the degradation level increased, 
the opacity of the films also increased. The degradation rates 
of individual isolates were determined by the weight loss of 
the respective films. After 60 days of incubation, the PBAT 
degradation rates of P. lilacinum BA1S, P. citrinum BA2S, 
A. fumigatus CB1S, and W. dispersa SB1S were 15.27%, 
5.35%, 7.89%, and 4.04%, respectively (Fig. 2B). Accord-
ingly, P. lilacinum strain BA1S was chosen for further 
experiments.

Surface appearance of PBAT films degraded by P. 
lilacinum BA1S

SEM analysis was conducted to observe the morpho-
logical change in the PBAT film surface degraded by 
P. lilacinum BA1S after 14  days of incubation. As 
shown in Fig. S3A, the untreated BA1S film displayed 
a smooth surface. On the other hand, many cracks and 
roughness were observed on the BA1S-treated film sur-
face (Fig. 3A). The inoculated spores attached to the 
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surface of the film (Fig. 3B, arrow) germinated into 
hyphae, and then the mycelia spanned the film sur-
face (Fig. S1B). Additionally, a specialized appresso-
rium structure of the strain was adhered on the surface 
(Fig. 3C, arrow). Moreover, various spherical struc-
tures were found on the degraded surface, and tangled 
hyphae were embedded in their surroundings (Figs. 3D 
and S1C). The hyphae also penetrated into the interior 
of the spherical structures (Figs. 3E, F, and S1D). The 
broken and hollow spherical structures (Fig. S1E) indi-
cate that the composition of the film was degraded by 
the fungal strain (Fig. S1F).

Structural changes and degradation products 
of the PBAT films degraded by P. lilacinum BA1S

FTIR analysis was performed to confirm the components 
of the functional groups of the PBAT films before and after 
degradation (14 dpi). Referring to the peak positions for 
individual functional groups in the previous literature (Kilic 
et al. 2019), the peaks for C-H stretching in aliphatic and 
aromatic portions of functional groups were identified at 
3011–2855  cm−1 and 1710  cm−1 (C = O stretching in ester 
bond), respectively (Fig. S2). The other peaks were also rec-
ognized at 1255  cm−1 (C-O twisting in ester bond), 726  cm−1 

Fig. 1  Morphologies and phylogenetic tree of the potential PBAT-
degrading fungal strains isolated from farmlands. A Potato dextrose 
agar (PDA) plates were used to cultivate the fungal isolates. Spores 
and mycelia with different morphologies were observed on the sur-
face of the plates. The right-most panel indicates that the PBAT 
biodegradabilities of individual strains were evaluated by the sizes 
of transparent clearing zones on the emulsified PBAT plates. B ITS 
gene-based phylogenetic affiliation of the PBAT-degrading isolates. 
A phylogenetic tree was constructed from a comparison of the 5.8S 

ribosomal RNA gene and the partial sequences of the internal tran-
scribed spacer (ITS) region using neighbor-joining analysis of a dis-
tance matrix with Kimura’s two-parameter model. The pattern of 
branching was based on the class of different strains. Bootstrap values 
(expressed as percentages of 1000 replications) of more than 75% are 
shown at the nodes. The scale bar represents 0.05 substitutions per 
nucleotide position. Type strains for each species are designated with 
a superscript T, and Saccharomyces cerevisiae CBS 1171 was used as 
an outgroup
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(4 adjacent  CH2 groups stretching), and 901–700   cm−1 
(benzene bending). All absorption spectra of the degraded 
PBAT films were decreased in comparison with those before 
degradation, suggesting that the films underwent degrada-
tion. Among the peaks, those at 1710  cm−1 (C = O) and 

1255  cm−1 (C-O) were markedly reduced, suggesting that 
the ester bonds underwent hydrolytic cleavage.

To identify the products of the PBAT film that remained 
after degradation by P. lilacinum BA1S for 14 days, we 
analyzed the composition of the filtered culture medium by 

Fig. 2  Colonization of the isolates on the surface of PBAT films 
and their degradation abilities. Four fungal isolates were cocultured 
with ten pieces of PBAT plastic films (size: 2.5 cm × 5 cm, thickness: 
30  µm) at 30  °C in carbon-free medium. A Plastic films were col-
lected 28 days after incubation (DPI). The attachment of the mycelia 
was shown on the film surface (“Surface with mycelia”), and traces 

of decomposition were observed after removing the attached mycelia 
with DDW (“Surface with cleaning”). B Plastic films were sampled 
at 0, 14, 28, and 60 DPI. Weight loss was measured and calculated 
after surface cleaning and drying. The values are expressed as the 
mean ± standard deviation (p < 0.05; Tukey’s post hoc ANOVA)

Fig. 3  Scanning electron microscopy images of PBAT film partially 
degraded by P. lilacinum BA1S after 14 days. A BA1S-treated film. B 
Spore (arrow) and the germinated mycelia. C The specialized struc-

ture is the appressorium (arrow). D Spherical structures formed dur-
ing degradation. E, F The tangled hyphae were embedded in the sur-
rounding spherical structure
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LC‒MS. As shown in Fig. S3, two terephthalate deriva-
tives of the PBAT monomer were identified. The expected 
molecular weights of the extracted chemicals were 166.03 
 (C8H6O4) and 149.02  (C8H6O3˙) g/mol, respectively. This 

suggests that these terephthalate derivatives were the resi-
due of degradation products.

Extracellular and intracellular enzyme activities of P. 
lilacinum BA1S induced by PBAT

To assess the activities of the extracellular lipolytic enzymes 
and intracellular CPR enzymes induced by PBAT in the cul-
ture medium, the crude proteins of P. lilacinum BA1S were 
collected from individual treatments cultured with PBAT 
films for two weeks. The CK group indicates that P. lilaci-
num BA1S was cultured in 1% glucose medium for 5 days. 
The extracellular lipolytic enzyme activities against short-
chain to long-chain fatty acids were all increased after being 
cultured with PBAT films (Fig. 4), especially for the cata-
lyzed C4, C8, C10, and C12 substrates.

As shown in Fig. 5A, the PBAT-induced protein increased 
the absorbance peaks at 520 and 550 nm, and the denatured 
protein demonstrated spectral similarity to the control 
(without protein), suggesting that the reduction originated 
from the contribution of the CPR enzyme. In addition, the 
CPR activities of the controls (PDB medium and carbon-
free basal medium with 1% glucose) were 0.0028 and 
0.0043 nmol/min/ng, respectively, while the enzyme activi-
ties were 0.0057, 0.006, and 0.0067 nmol/min/ng after 
being cultured with PBAT for 7, 14, and 21 days (Fig. 5B). 
Accordingly, the cytochrome P450 reductase activity of 
P. lilacinum BA1S was enhanced by the PBAT film, and 

Fig. 4  Extracellular lipolytic enzyme activities of P. lilacinum BA1S 
in the presence of PBAT films. Extracellular crude proteins were 
concentrated from the culture medium supplemented with 1% glu-
cose and PBAT films. The lipolytic enzyme activities of P. lilacinum 
BA1S were determined by chromogenic substrates (i.e., p-nitrophenyl 
esters with different chain lengths). The enzyme activity was defined 
as the amount of the released 1  µmol p-nitrophenol per minute (U) 
in one unit of the crude protein (ng). The results are presented as 
the mean ± standard deviation (‘N.S.’: p > 0.05, ‘*’: p < 0.05, ‘**’: 
p < 0.01; Student’s t-test)

Fig. 5  Cytochrome P450 reductase activity of P. lilacinum BA1S 
induced by PBAT film. Intracellular proteins of BA1S were extracted 
and reacted with horse cytochrome c to measure cytochrome P450 
reductase activity. A The absorbance spectra of cytochrome c from 
450–600 nm were detected after reacting for 1 h. The red color rep-
resents the strain that was cocultured with PBAT for 14  days. The 
blue dashed line represents the extracted protein that was denatured 
by heating. CK (black color) used the extraction buffer as a control. 

B Comparison of the cytochrome P450 reductase activities induced 
by PBAT for 7, 14, and 21  days. The control trials were extracted 
from mycelia cultured in PDB medium and carbon-free medium with 
1% glucose. The activity was defined as the amount of the reduc-
tion of cytochrome c (nmol) per minute in one unit of the extracted 
protein (ng). The values of each treatment were expressed as the 
mean ± standard deviation (p < 0.05; Tukey’s post hoc ANOVA)
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the enzyme activity was increased during incubation with 
PBAT.

Gene expression of P. lilacinum BA1S 
during the early stages of PBAT biodegradation

To evaluate the expression of the related genes during the 
early stages of degradation, P. lilacinum BA1S was cocul-
tured with PBAT films for less than 3 days and compared 
with those without PBAT addition. We extracted the total 
RNA of the initially germinated spores (Fig. 6Ab) at 16 h 
and 3 days. The expression of the ungerminated spores in the 
respective treatments (Fig. 6Aa) was used as a reference for 
the analyses (i.e., as an initial value). As shown in Figs. 6Ac 
and Ad, no significant difference in the morphology and 
amounts of germinated spores of P. lilacinum BA1S was 
observed between the treatments with and without PBAT. 
The log2-fold change values (Fig. 6B and Table S2) and the 
relative expression (Fig. 6C) of the cutinase gene depicted 
were significantly upregulated when cultured with PBAT 
after 16 h and 3 days of incubation. In contrast, those for the 
treatments in the carbon-free basal medium without PBAT 

addition were downregulated. On the other hand, the expres-
sion of the carbon catabolite repression-related gene (CreA) 
was significantly downregulated for the treatments cultured 
with PBAT, but the treatments in the carbon-free medium 
were significantly downregulated at 16 h and upregulated at 
3 days (Fig. 6B).

Gene expression of P. lilacinum BA1S with long‑term 
incubation of PBAT biodegradation

To elucidate the expression of the target genes and exam-
ine the correlation to PBAT biodegradation, we analyzed 
the transcripts of the treatments with and without PBAT 
for long-term incubation (16 h to 30 days). Glucose was 
chosen as the carbon control for comparison to PBAT. As 
shown in Fig. 7 and Table S3, the log2-fold change values 
of the cutinase and cytochrome P450 genes were signifi-
cantly upregulated after being cultured with PBAT film. In 
contrast, those of the cAMP receptor and cytochrome P450 
reductase (CPR) were significantly downregulated during 
incubation. On the other hand, the subtilisin (peptidase) 
gene was significantly upregulated in the early stages of 

Fig. 6  Gene expression of P. lilacinum BA1S in the early stages of 
culture with PBAT film. The spores were cultured with PBAT films 
or cultured in carbon-free medium for 16 h and 3 days of incubation, 
respectively. The gene expression of the ungerminated spores was 
used as a reference for the analyses. A The morphologies of the P. 
lilacinum BA1S spores under optical microscopy: (a) ungerminated 
spores; (b) germinated spores; (c) germinated spores after culturing 
in carbon-free medium for 16 h; (d) germinated spores after cultur-

ing with PBAT films for 16 h. B Differential expression analyses by 
qPCR based on log2-fold change values for creA and cutinase genes. 
The dotted line indicates that the value over the threshold of 2 was 
designated a significant difference (‘*’). The dataset of this plot is 
provided in Table S2. C Relative expression  (2−ΔΔCT) values of creA 
and cutinase genes were determined by qPCR. The values of each 
trial were expressed as the mean ± standard deviation (p < 0.05; Tuk-
ey’s post hoc ANOVA)
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incubation; however, the expression of the CCR-regulated 
gene (CreA) was downregulated in the early stage and sig-
nificantly upregulated at 14 dpi.

Considering the relative expression level for the above-
mentioned genes (Figs. S4A-H), the expression of the appres-
sorium formation-related genes was upregulated after incuba-
tion for two weeks (Figs. S4A-C). In addition, we found that 
the expression levels of the hydrolase genes, especially the 
cutinase gene, were significantly enhanced in the early stages 
of PBAT incubation and decreased after 7 days (Figs. S4D 
and E). In addition, increased expression of cytochrome 
P450-related genes (CYP505 and CPR) was observed in the 
later stage of incubation (Figs. S4F and G), and the CreA 
gene was significantly increased at 14 dpi (Fig. S4H).

Discussion

In this study, we isolated four PBAT-degrading fungal strains 
from farmlands, and Purpureocillium lilacinum strain BA1S 
showed the highest degradation potential under mesophilic 
conditions, reaching approximately 15% weight loss within 
30 days of incubation (Fig. 2B).

Appressoria, which is a highly specialized adhesion struc-
ture of hyphae that uses turgor pressure to punch through 
the host surface, could be found on BA1S-treated PBAT 

films (Fig. 3C), (Chethana et al. 2021; Holland et al. 1999). 
Appressoria can be used for not only infection but also colo-
nization on hydrophobic inorganic materials and have been 
observed on starch-plastic films during biodegradation in 
soils (Lopez-Llorca and Valiente 1993). However, gene 
expression analysis of appressorium formation-associated 
genes, including cAMP receptor, serine kinase and  Ca2+/
calmodulin-dependent protein kinase (CaMK) (Fig.  7), 
showed that there was no difference between the PBAT-
treated group and the non-PBAT-treated group. Therefore, 
we assume that the appressorium formation of BA1S was not 
significantly induced in the presence of PBAT films and was 
not directly related to its degradation ability.

In our study, all characteristic peaks in the FTIR spectra 
decreased after PBAT degradation (Fig. S2), similar to a pre-
vious study (Han et al. 2021). The reduced peaks of the ester 
bond at 1710 cm-1 (i.e., C = O stretching in the ester bond) 
and 1255 cm-1 (i.e., C-O twisting in the ester bond) sug-
gested that ester bonds underwent hydrolytic cleavage and 
the PBAT film were degraded (Han et al. 2021; Kijchaveng-
kul et al. 2010a). This result indicated that the PBAT bio-
degradability of BA1S was related to enzymatic hydrolysis.

Previous studies have indicated that the cutinases of 
bacteria or fungi, such as Thermobifida cellulosilytica 
DSM44535 (i.e., Thc_Cut1) and Fusarium solani pisi (i.e., 
FsC), could efficiently degrade PBAT (Perz et al. 2016; 

Fig. 7  Gene expression analysis of P. lilacinum BA1S induced by 
PBAT films for long-term incubation (16 h-30 days). The spores were 
cultured with PBAT films in carbon-free medium for 16  h, 3  days, 
7  days, 14  days, and 30  days. The gene expression of the ungermi-
nated spores was used as a reference for the analyses. CK repre-
sents the control trial cultured with glucose as the carbon source for 
5–7  days. Differential expression analyses by qPCR based on log2-
fold change values for appressorium formation-associated genes 
(cAMP receptor, serine kinase,  Ca2+/calmodulin-dependent protein 

kinase (CaMK)), hydrolase genes (cutinase and subtilisin (S08)), 
cytochrome P450-related genes (CYP505 and cytochrome P450 
reductase (CPR)), and carbon catabolite repression (CCR)-regulated 
gene (CreA). The dotted line on the chart indicates that a value over 
the threshold of 2 was designated as a significant difference (‘*’). The 
values of the treatments were expressed as the mean ± standard devia-
tion (p < 0.05; Tukey’s post hoc ANOVA test). The dataset of this plot 
is provided in Table S3
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Zumstein et al. 2017). The enzyme is a lipolytic enzyme 
and acts on short–medium-chain acyl esters up to approxi-
mately C8–C10 (Kaushal et al. 2021; Kawai et al. 2019). In 
our study, the activities of the lipolytic enzymes against the 
fatty acids of C4, C8, C10, and C12 chain lengths of BA1S 
were significantly induced when cultured with the PBAT 
films (Fig. 4), suggesting that the activities were associated 
with the PBAT-degrading ability of BA1S. Furthermore, the 
cutinase gene expression of BA1S at different incubation 
time points was significantly increased in the presence of 
PBAT films (Fig. S4D). Accordingly, cutinase may play an 
essential role in the degradation of PBAT by P. lilacinum 
BA1S. However, the catalytic mechanism needs to be eluci-
dated to increase its degradation rate.

Intracellular cytochrome P450 (CYP) monooxygenase 
activity plays an essential role in plastic degradation (Ali 
et al. 2021). This enzyme catalyzes the hydroxylation of 
nonactivated hydrocarbons from lipophilic compounds to 
more hydrophilic derivatives during the metabolic pathway 
(Črešnar and Petrič 2011; Isin and Guengerich 2007). We 
assessed the expression of the related genes (CYP505 and 
CPR) and the enzyme activities to elucidate their relation-
ship with the biodegradation of PBAT. As shown in Figs. S4F 
and G, the CYP505 gene [one of the P450 enzymes from the 
CYP505 family, which can catalyze hydroxylation reactions 
of n-alkanes and fatty acids (Maseme et al. 2020)] and the 
cytochrome P450 reductase gene (CPR) were upregulated and 
significantly increased at the later stage of incubation. In a 
previous study, Zampolli et al. reported that the transcript of 
the cyp450 gene (encoding cytochrome P450 hydroxylase) in 
a vegetative bacterium, Rhodococcus opacus strain R7, was 

significantly upregulated in the presence of polyethylene (PE) 
(Zampolli et al. 2021). Because the expression of each CYP is 
influenced by a unique combination of mechanisms and fac-
tors in each organism, biodegradation of the polyesters (i.e., 
PBAT, PE, etc.) can trigger similar expression in fungi and 
bacteria. In this study, we determined the enzymatic activity 
of NADPH-cytochrome P450 reductase (CPR) to represent 
the activity of cytochrome P450 as described previously (Jing 
et al. 2018). As shown in Fig. 5B, the CPR activities induced 
by the PBAT films from 7–21 days were higher than those of 
the control. This result is consistent with the transcript result 
shown in Fig. S4G. In summary, the increased activities of 
cytochrome P450 and reductase indicated that the elite fungal 
strain BA1S assimilated alternate carbon sources (i.e., poly-
esters, such as PBAT) by P450-mediated biodegradation to 
sustain its growth in carbon-free medium.

However, slow degradation of PBAT occurred after 
14 days of incubation (Fig. 2). In addition, the expression 
level of the cutinase gene began to decrease after 7 days 
when BA1S was cultured with PBAT films (Figs. S4D and 
E). Several studies have indicated that carbon catabolite 
repression (CCR) affects hydrolase production and inhibits 
polyester degradation. For example, PBAT hydrolase pro-
duction of Isaria fumosorosea NKCM1712 was suppressed 
while cultivating in glucose/or fructose minimal medium 
and LB medium (Kasuya et al. 2009). Polyurethane (PU) 
degradation by Pseudomonas sp. was also inhibited during 
cultivation in glucose minimal medium (Hung et al. 2016). 
To elucidate the role of CCR in PBAT degradation, we ana-
lyzed the gene expression of several hydrolytic enzymes 
and CreA in strain BA1S. The gene expression of the CreA 

Fig. 8  Schematic diagram of 
hypothetical model of carbon 
catabolite repression (CCR) reg-
ulation on PBAT biodegradation 
by P. lilacinum BA1S. A When 
the available carbon nutrients 
were insufficient to sustain the 
growth of BA1S, the PBAT 
hydrolases (e.g., cutinase) were 
induced and secreted, resulting 
in the increase of degradation. 
B When the available carbon 
nutrients were abundant in 
the environment, the CreA-
mediated CCR inhibited the 
expression of PBAT hydrolases 
and resulted in the decrease of 
degradation. This illustration 
was created at BioRender.com
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gene was initially downregulated at the early stage but sig-
nificantly upregulated after 14 days of incubation (Fig. 7). 
We deduced that the downregulation of CreA may be due 
to carbon starvation when BA1S was cultured with PBAT 
films in carbon-free medium. The lipolytic enzymes were 
significantly upregulated in the early stage (Fig. 6), and 
the degraded PBAT products were utilized as secondary 
carbon sources as a result. These compounds stimulate the 
gene expression of CreA, which leads to CCR and causes 
the inhibition of PBAT degradation in the later stage. This 
hypothetical CCR regulation mechanism of PBAT degrada-
tion by strain BA1S is shown in Fig. 8.

In general, adipic acid (AA), terephthalic acid (TPA), 
and 1,4-butanediol (BDO) remain at the end of PBAT deg-
radation (Witt et al. 2001). In this study, two TPA (tere-
phthalate) derivatives of PBAT monomers, i.e.,  C8H6O4 
(166.03 g/mol) and  C8H6O3˙ (149.02 g/mol), remained in 
the culture medium after 14 days of degradation (Fig. S3). 
Because no AA and BDO monomers were detected, the 
ester groups in the aliphatic BA section were almost com-
pletely degraded. It has been reported that the ester groups 
in the aliphatic BA section are more susceptible to hydroly-
sis than those in the aromatic BT sections (Kijchavengkul 
et al. 2010b). Zumstein et al. found that PBAT degradation 
is asymmetric and affected by the terephthalate content 
(Zumstein et al. 2017). TPA usually accumulates in large 
amounts during the biodegradation of PET or PBAT (Gao 
et al. 2022; Jia et al. 2021b). There are some microbes that 
were degraded TPA effectively. For example, Comamonas 
sp. strain E6 and Arthrobacter sp. 0574 could utilize TPA 
as their sole carbon source (Sasoh et al. 2006; Zhang et al. 
2013). Rhodococcus sp. strain RHA1 and Pseudomonas 
umsongensis GO16 were able to degrade TPA (Hara et al. 
2007; Narancic et al. 2021). It has been assumed that the 
released TPA was further degraded by the microbes via 
either aromatizing dehydrogenases or cofactor-free decar-
boxylases (Boll et al. 2020). Accordingly, coinoculating 
TPA monomer degraders with BA1S or treating with asso-
ciative enzymes are feasible strategies for degrading PBAT 
more thoroughly, although they remain to be proven.

P. lilacinum strain BA1S showed a superior PBAT deg-
radation rate, in which lipolytic enzyme activities were 
induced during coculture with PBAT, and the cutinase gene 
was significantly upregulated during PBAT degradation. The 
activity of intracellular cytochrome P450 (CYP) monoox-
ygenase was verified to be correlated with the utilization 
of PBAT in BA1S cells. CreA-mediated carbon catabolite 
repression was confirmed to be involved in regulating PBAT-
degrading hydrolases and affected the degradation efficiency.
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